
Series VF Hot Runner Manifolds

Product type

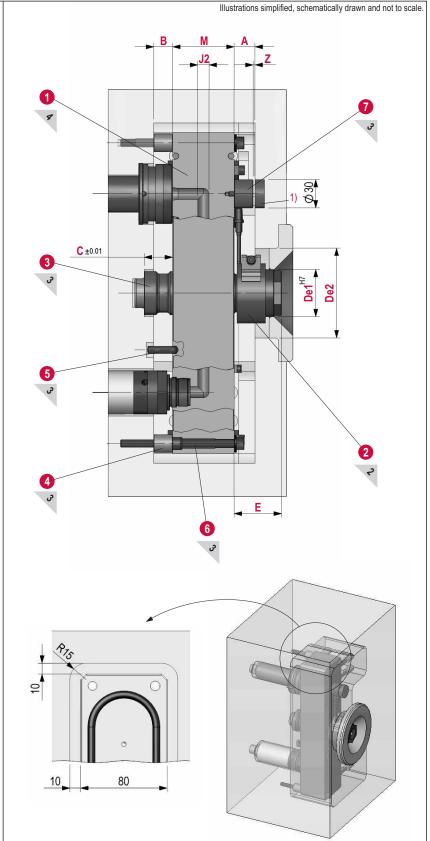
Hot runner manifold of series **VF** which are characterised by the following dimensions:

MThickness65 mmJ2Flow bore Ømax. Ø22 mm

The manifolds can be supplied in standard shapes (I, H, X, Y) and in any realisable customised shape.

Components

Melt flow components


- 1. Manifold block including heaters,
- connections and thermocouple 2. Inlet bushing (including heater)
- z. Inter busining (including heater)

Attached parts and accessories

- 3. Centre support
- 4. Support pillar with spring dowel
- 5. Dowel
- 6. Fastening screw
- 7. Support pad

Major dimensions (mm)

Α	Manifold cut out, right (above)	20 ²⁾		
В	Manifold cut out, left (below)	2032 ²⁾		
Z	Expansion gap	00.16 ²⁾		
С	Height centre support	2050		
E	Height inlet bushing	25200		
De1	Ø of contact inlet bushing	Ø50		
De2	Ø of cut out inlet bushing	Ø 60 / Ø95		

✤ page no. of related data sheets

- 1) Hardened insert recommended; is not supplied with the hot runner system.
- Values of these dimensions depend on the selected nozzle or on the selected material. They can be found in the Synventive Hot Runner Guide.

2009-05-01 - All rights reserved. Errors and omissions excepted. For a specific application, please consult Synventive.

1/4

For design and application information, see the Synventive Hot Runner Guide.

Inlet bushings which can be combined with hot runner manifolds of series **VF**:

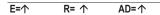
1. BC 025 50

- → short inlet bushing, not heated
- →screwed into manifold

2. BC ... 50

→ heated inlet bushing of different heights
 → screwed into manifold

3. BC ... 80

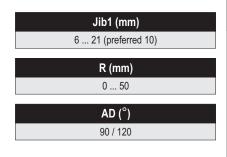

- →heated inlet bushing of different heights
- → screwed into manifold
- ➔ for hotrunners with side arms and big systems

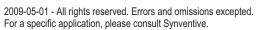
Here you can configure your inlet bushing

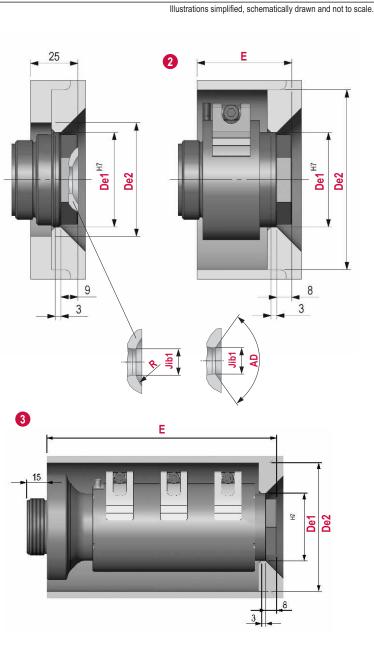
1. Complete the inlet bushing description

BC		50
Part code ↑	Length code 个	Size ↑

2. Selection of variables


Example and explanations


Inlet bushing	Position in length chart	
BC	100	50
Part code ↑	Length code 个	Size ↑


 65
 16

 E=↑
 R= ↑
 AD=↑

Variables for precise part specification from the drawings and tables shown here

Length code		E (mm)	De1 (mm)	De2 (mm)	Heater power (Watt)
BC 025 50	025	25	Ø50	Ø60	-
BC 50	060	5059.9	Ø50	Ø95	630
BC 50	100	6099.9	Ø50	Ø95	500
BC 50	140	100139.9	Ø50	Ø95	500
BC 50	180	140179.9	Ø50	Ø95	630
BC 50	200	180200	Ø50	Ø95	750
BC 80	164	150163.9	Ø50	Ø95	500
BC 80	200	164200	Ø50	Ø95	630

2/4

For design and application information, see the Synventive Hot Runner Guide.

Series VF C P Inlet bushings T A

Attached parts and accessories for hot runner manifolds of series VF:

1. MCS 46 ...

Centre support	Lcs (mm)	B ²⁾ (mm)
MCS 46 20	20	max. 20
MCS 46 30	30	max. 30
MCS 46 50	50	max. 50

C (mm) for nozzle size 12 / 16 / 22 ≥B

2. MSPL ...

Support pillar	Dsp (mm)	Lsp (mm)	B ²⁾ (mm)
MSPL 13 20	Ø13	20	max. 20
MSPL 13 30	Ø13	30	max. 30
MSPL 13 50	Ø13	50	max. 50
MSPL 16 20	Ø16	20	max. 20
MSPL 16 30	Ø16	30	max. 30
MSPL 16 50	Ø16	50	max. 50

A

2

6

3. DIN 7346: 13x20 ST / 16x20 ST

→ Spring dowel

4. DIN 912: M8 / M10.5

→Fastening screws

5. DIN 6340: 8.4-ST / 10.5-ST

→Washers

6. DIN 6325: 8 m6

→Dowel

7. 56-30 ...

→ Support pads are only used when they are needed e g when face fit manifold nozzles are used.

Support pad	Lms (mm)	A ²⁾ (mm)
56-30-30	30	max. 30
56-30-40	40	max. 40

Z (mm) ²⁾
0 0.16

- 1) Hardened insert recommended; is not supplied with the hot runner system.
- 2) Values of these dimensions depend on the selected nozzle or on the selected material. They can be found in the Synventive Hot Runner Guide.

2009-05-01 - All rights reserved. Errors and omissions excepted. For a specific application, please consult Synventive.

Series VF **C**P

Attached parts and accessories **T** Illustrations simplified, schematically drawn and not to scale. В 7 5 Ø30 1) C ±0.01 F Ø50 Ø31 Lcs ±0.01 = C Lcs+10 В Lsp ∞ 0 Ø30

For design and application information, see the Synventive Hot Runner Guide.

Lms

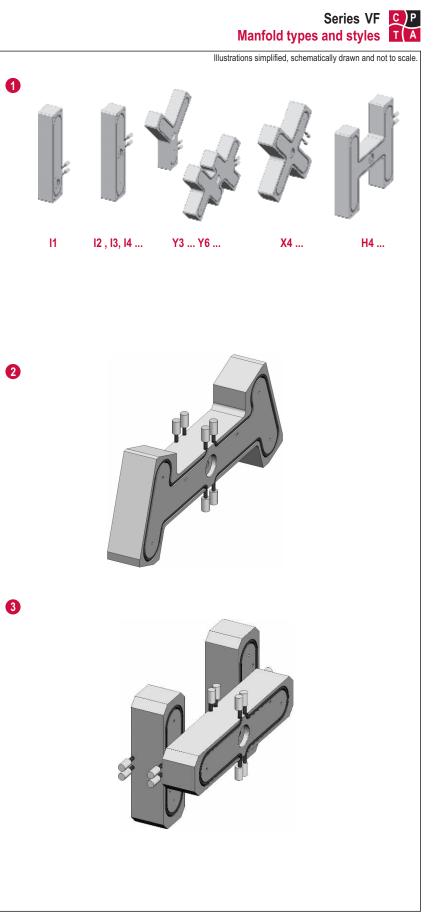
1. Manifolds in standard shape

Manifolds in standard shape have been designed by implementing the standard cavity and runner layouts which are widely used in practice: I, H, X and Y.

Shown on the right there are several examples for manifolds in standard shape based on the components of series **VF**. They are designed and made according to the customer's specification

Using capital letters to describe the different manifold types does not only refer to the shape of the manifold but also to the runner layout inside the manifold. The number represents the number of nozzles attached to the manifold.

2. Manifolds in customised shape


Manifolds in customised shape are designed and made according to the customer's specification by using components of the selected manifold series.

Shown on the right there is a manifold in customised shape which has been designed by using components of series **VF**.

3. Bridge manifolds

Bridge manifolds make it possible to combine several manifolds to one feed system. They are are designed and made according to the customer's specification by using components of the selected manifold series.

Shown on the right there is a bridge manifold which has been designed by using components of series **VF**.

2009-05-01 - All rights reserved. Errors and omissions excepted. For a specific application, please consult Synventive.

For design and application information, see the Synventive Hot Runner Guide.

www.synventive.com

MK-PRM.BRM.GB-P.IVFMAN 2009-05-01